1978年8月生,中国共产党党员。1997年考入吉林大学物理系(现吉林大学物理学院),次年遴选入国家理科基础科学研究和教学人才培养基地班,2001年本科毕业保送入吉林大学原子与分子物理研究所,师从潘守甫先生。2006年12月提前毕业,获理学博士学位。2004年6月留校任教,2006年9月破格为讲师,2008年9月破格晋升为副教授,2011年9月破格晋升为教授,2012年6月被遴选为博士生指导教师。曾于2007年7月-2009年7月,在中国科学院上海应用物理研究所进行博士后研究工作。2008年至今,多次赴香港城市大学、新加坡南洋理工大学进行访问研究,历任高级访问助理(Senior Visiting Assistant)、研究员(Research Fellow)、访问学者(Research Scholar)。主要从事复杂分子系统中的相互作用理论研究工作,尤其在超原子的结构与功能特性以及分子间相互作用的电子关联特性研究方面取得了系列进展,提出了超原子物理学(Superatomic Physics) 概念方向,发现了氢键作用中存在反协同效应(Uncooperative Effect),在原子层次上建立了一些有效的计算分析方法,成果受到学术界广泛认可。承担有20余个SCI检索期刊及其它一些杂志的审稿工作,以及履行有多个学术评价的评审人职责,任职多个全国性学术组织委员或理事。
研究方向:复杂分子系统中的相互作用
1)价电子诱导的系统自旋极化研究
主要包括:超原子的结构与功能特性;sp价电子旋极化特性;高角动量f价壳层电子的关联特性。
2)分子间作用的电子关联特性研究
主要包括:氢键的类共价特性问题,堆垛的电子结构问题,一般范德华(vdW)相互作用的原子层次再认识等问题。
3)相关于以上两方面的方法学研究
主要包括:发展适用于电子自旋极化研究的分析方法,发展适合于复杂体系的动力学和势能面模拟的新方法等。
本方向主要包括以上三个方面,通过以量子力学、分子力学等相结合的方法,开展复杂分子系统中的相互作用研究工作。本方向不仅是分子物理学研究的重要内容,同时紧密相关于物理学与生命科学、材料科学间的学科交叉,以及原子与分子物理和物理学其它科研方向相交叉的研究。在本方向的科研工作中,王志刚教授所领导的研究组在超原子团簇的结构和功能特性,限域诱导金属纳米尺度系统的电子自旋极化,环境影响的分子构象转变,分子间吸附作用的电子结构等具体研究方面,于原子层次上做出了一些创新工作。发展了相关的理论研究方法,包括发展了适用于自旋极化密度泛函研究的基组选择方案和电荷布居分析方法,提出了基于分子动力学模拟来搜寻分子间相互作用势能面极值点的统计方法,乃至发展了一系列适用于复杂体系性质模拟研究的参数势方法等方面。在相关的问题研究中于SCI检索期刊发表论文130余篇,其中包括第一作者和通讯作者论文100余篇,多篇被选为研究亮点或被新闻媒体转载报道,被SCI引用2300余次(H因子24),多次受邀撰写原子层次上的超原子问题研究以及分子间相互作用问题研究综述和评述等文章。
王志刚教授先后以第一责任人获得王宽诚博士后工作奖(K. C.Wong Education Foundation, Hong Kong, China)、省自然科学学术成果二、三等奖、吉林省高校科研春苗人才(首届),以及霍英东青年教师基金,并获评吉林省“人才18条”新政C类(部级领军)人才。主持有国家重大科技专项、国家基础科研挑战计划、国家自然科学基金(青年,青年-面上连续资助,面上)、吉林省中青年科技领军人才及团队项目在内的多个研究课题。所有指导学生完成的科研论文,学生均为第一作者。所培养的研究生,目前已有3人获得吉林省优秀博士学位论文(包括原子与分子物理专业的首个省级优秀博士学位论文),4人获得省级优秀硕士学位论文(包括原子与分子物理专业的首个省级优秀硕士学位论文),10余人获得吉林大学优秀学位论文。多人获得国家奖学金,多人获得吉林大学研究生“精英杯”学术成果大奖赛一、二、三等奖等奖项,多人获得优秀研究生、优秀毕业研究生等称号。竭诚欢迎有志于相关研究方向的同学加入!
阶段进展总结:
在2022年,研究组发表同行评议论文10余篇,取得的主要进展包括:以超原子物理学研究中的超原子与原子相比较研究为出发点,提出了超原子洪特定则,以及进一步提出了基于超原子的准(超)分子;撰写了超原子物理学的首篇综述,并提出了超原子物理学时间轴;演示了较为原始版本的功能需求为核心的新范式思路,实现了“吉”字构建;基于闭壳超原子实现了金属类团簇的直接组装;发现了分子间氢键作用协同效应存在适用性边界;结合理论与实验提出了聚合物降解引发模型;在限域下氢键翻转研究中提出了共振隧穿模型。本年度最为重要的进展,是超原子物理学的建设工作。
2020年完成了两件关键方面的事情。第一,组织了纪念导师潘守甫先生诞辰八十五周年的系列活动;第二,提出了“超原子物理学(Superatomic physics)”研究方向,包括提出了超原子物理学这一名词概念,论述了建设超原子物理学的逻辑必然性,提议了超原子物理学的基本研究内容,并提出了从结构出发转变到以功能为核心的新范式思路。
科研进展贡献:
9, Yu F. M.△ (学生一作) and Li J. R.△ (学生一作), Liu Z., Wang R., Zhu Y., Huang W. R., Liu Z. H., Wang Z. G.*, "From Atomic Physics to Superatomic Physics", J. Clust. Sci., 2023, 34, 1691-1708 (综述);
8, 王志刚*,“超原子物理学:原子层次上物理的新方向 (Superatomic physics: A new direction in atomic-level physics)”,《科学通报》, 2020, 65, 2197-2200 (观点论文);
7,王志刚*,“从原子到超原子的原子层次新机遇(From atom to superatom: A new opportunity at atomic level)”,《原子与分子物理学报》, 2020, 37, 980-986 (纪念论文);
6, 王志刚*,“自组装的原子层次物理视角 (Physical insights on self-assembly at an atomic level )”,《科学通报》, 2018, 63, 1775-1782(评述论文);
5, Wang J. P.△ (学生一作), Xie W. Y.△ (学生一作), Gao Y., Xu D. X., Wang Z. G.*, “Emerging disciplines based on superatoms: a perspective point of view", Sci. Bulletin, 2018, 63, 395-397(观点论文);
4, Zhang Z. Y.(学生一作), Li D. H., Jiang W. R. and Wang Z. G.*, “The electron density delocalization of hydrogen bond systems”, Adv. Phys. X, 2018, 3, 1428915, DOI: 10.1080/23746149.2018.1428915(受邀综述);
3, Gao Y.(学生一作), Wang Z. G.*, “Effects of 5f-elements on electronic structures and spectroscopic properties of gold superatom models”, Chin. Phys. B, 2016, 25, 083102 (受邀综述);
2, 于天荣(学生一作),姜万润,王波,张占文,陈素芬,李波,唐永建,王志刚*,“聚-α-甲基苯乙烯解聚反应的动力学模拟",《科学通报》, 2016, Doi: 10.1360/N972016-00033.(研究报告);
1, Jiang W. R.(学生一作), Wang Z. G.*, "First-Principles Calculations of Magnetism in Nanoscale Carbon Materials Confining Metal with f Valence Electrons", J. Clust. Sci., 2016, 27, 845-860 (受邀综述).
选择的部分工作成果(*通讯作者,△并列一作):
54, Yang X. R.(学生一作), Zhang D. P., Liu R., Wang L., Liu J. Y.*, and Wang Z. G.*, "Rapid Thalidomide Racemization Is Related to Proton Tunneling Reactions via Water Bridges", J. Phys. Chem. Lett., 2023, 14, 10592−10598;
53, Wang L.△(学生一作), Cheng W.△(学生一作), Yang X. R., Wang R., Liu R., Zhu Y.*, Yi Y., Tang Y. J., Wang Z. G.*, "An atomic insight into reaction pathways and temperature effects in the degradation of polyethylene, polypropylene and polystyrene", Polymer Degradation and Stability, 2023, 215, 110450;
52, Liu R. △(学生一作), Zhang Z. Y. △(学生一作), Yan L. X., Yang X. R., Zhu Y., Su P. F.*, Song H. J.*, and Wang Z. G.*, "The Influence of Hydrogen Bonds on the Roaming Reaction", J. Phys. Chem. Lett., 2023, 14, 9351−9356;
51, Wang R.(学生一作), Liu Z. H., Yu F. M., Li J. R., Wang Z. G.*, "High-pressure-induced electronic and structural transition of superatoms", J. Chem. Phys., 2023, 158, 244702 (AIPP公众号亮点介绍);
50, Li J. R.(学生一作), Wang R., Huang W. R., Zhu Y., Teo B. K.*, and Wang Z. G.*, "Smallest Endohedral Metallofullerenes [Mg@C20]n (n = 4, 2, 0, −2, and −4): Endo-Ionic Interaction in Superatoms", J. Phys. Chem. Lett., 2023, 14, 2862–2868;
49, Wang R.(学生一作), Yang X. R., Huang W. R., Liu Z. H., Zhu Y., Liu H. Y.*, and Wang Z. G.*, "Superatomic states under high pressure", iScience, 2023, 26, 106281;
48, Huang W. R.(学生一作), Yu F. M., Zhu Y., Wang R., Li J. R., Zhang S. X.-A.*, and Wang Z. G.*, “Z”-type tilted quasi-one-dimensional assembly of actinide-embedded coinage metal near-plane superatoms and their optical properties, Adv. Sci., 2023, 10, 2206899;
47, Liu R. (学生一作), Wang R., Li D. H., Zhu Y., Yang X. R., Wang Z. G.*, "An ab initio study on boundaries for characterizing cooperative effect of hydrogen bonds by intermolecular compression", Chin. Chem. Lett., 2023, 34, 107857;
46, Yu F. M.(学生一作),Liu Z. H., Li J. R., Huang W. R., Yang X. R., and Wang Z. G.*, “Bottom-up design and assembly with superatomic building blocks”, Chin. Phys. B, 2022, 31, 128107 (Highlight);
45, Huang W. R.△(学生一作), Zhang Q. Y.△(学生一作), Wang R., Liu Z. H., Zhu Y., Yu F. M., Teo B. K.*, and Wang Z. G.*, "Super-Excimer: Anomalous Bonding in a Metastable Excited-State Dimer of Superatomic Dimers", J. Phys. Chem. Lett., 2022, 13, 8455–8461;
44, Yu F. M.(学生一作), Zhu Y., Gao Y., Wang R., Huang W. R., Gao Y.*, and Wang Z. G.*, "Direct assembly between closed-shell coinage metal superatoms", Nano Research, 2022, 15, 8665-8672;
43, Chen Q.△, Zhu Y.△(学生一作), Zhang Z. W., Ma, J. J., He, Z. B.*, and Wang Z. G.*, "Initiator enhancement of mandrel degradation for ICF target fabrication", iScience, 2022, 25, 104733;
42, Wu X. C.△(学生一作), Yu F. M.△(学生一作), Xie W. Y., Liu Z., Wang Z. G.*, and Zhang S. B.*, "High-Stability Light-Element Magnetic Superatoms Determined by Hund's Rule", J. Phys. Chem. Lett. 2022, 13, 2632−2637;
41, Liu Y., Wang R., Wang Z. G., Li D.*, Cui T.* "Formation of twelve-fold iodine coordination at high pressure", Nat. Commun., 2022, 13, 412;
40, Zhu Y.(学生一作), Yang X. R., Yu F. M., Wang R., Chen Q., Zhang Z. W. *, and Wang Z. G.*, “Quantum tunneling of hydrogen atom transfer affects mandrel degradation in ICF target fabrication”, iScience, 2022, 25, 103674;
39, Liu Z.(学生一作), Wu X. C., Zhu Y., Wang R., Yu F. M., and Wang Z. G.*, “Superatomic Rydberg state excitation”, J. Phys. Chem. Lett., 2021, 12, 11766-11771;
38, Zhai C. G., Yin X., Niu S. F. Yao M. G.*, Hu S. H., Dong J. J., Shang Y. C., Wang Z. G., Li Q. J., Sundqvist B., Liu B. B.*, "Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials", Nat. Commun. 2021, 12, 4084;
37, Cheng A. H.△(学生一作), Wang R.△(学生一作), Liu Z., Liu R., Huang W. R., and Wang Z. G.*, “Charge “skin behavior” of gold superatoms”, J. Phys. Chem. Lett., 2021, 12, 8713-8719;
36, Zhang D. P.(学生一作), Yang X. R., Jiang W. R., Jin L., Gao Y. * and Wang Z. G.*, "Pauli Repulsion Enhances Mobility of Ultraconfined Water", ACS Nano, 2021, 15, 2, 2490-2496;
35, Jin L. (学生一作), Zhang D. P., Zhu Y., Yang X. R., Gao Y., and Wang Z. G.*, "A step-by-step process-induced unidirectional oriented water wire in the nanotube", J. Phys. Chem. Lett., 2021, 12, 350-354;
34, Li D. H. (学生一作), Zhang Z. Y., Jiang W. R., Zhu Y., Gao Y.*, and Wang Z. G.*, "The uncooperative effect of hydrogen bond on water dimer". Chin. Phys. Lett., 2021, 38, 013101 (Editors' Suggestion);
33, Zhang Q. Y. (学生一作), Gao Y., Wang R., Zhu Y., Xie W. Y., Schreckenbach G.*, and Wang Z. G.*, "Interaction potential energy surface between superatoms", Chem. Commun., 2020, 56, 14681-14684;
32, Liu M. J.△,Zhang D. P.(学生一作), Han J -L, Liu C. B.*, Ding Y. C., Wang Z. G.*, Wang A. -J.*, "Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies", Chemical Engineering Journal. 2020, 382, 123017;
31, Xie W. Y.△(学生一作), Zhu Y.△(学生一作) , Wang J. P., Cheng A. H., Wang Z. G.*, "Magnetic coupling induced self-assembly at atomic level. " Chinese Physics Letter, 2019, 36, 116401 (Express Letter 专栏,入选杂志2019年度20篇亮点工作);
30, Han J. -L.△, Zhang D. P.△(学生一作), Jiang W. R., Tao Y., Liu M. -J., Haider M. R., Ren R. -Y., Wang H. -C., Jiang W. -L, Ding Y. -C. Hou Y. -N., Zhang B., Cheng H. -Y, Xia X., Wang Z. G.*, Wang A. -J.* " Tuning the Functional Groups of a Graphene Oxide Membrane by ·OH Contributes to the Nearly Complete Prevention of Membrane Fouling", J. Membr. Sci., 2019, 576, 190-197;
29, Jiang W. R. (学生一作), Wang J., Wang R. and Wang Z. G.*, "Dependence of characteristic interlayer vibration modes on interlayer spin arrangement in stacked graphene nanofragments", Carbon, 2019, 141, 339-347;
28, Xie W. Y.(学生一作), Jiang W. R., Gao Y., Wang J. and Wang Z. G.*, “Binding for endohedral-metallofullerene superatoms induced by magnetic coupling”, Chem. Commun., 2018, 54,13383-13386;
27, Zhang D. P.(学生一作), Zhang Z. Y., Jiang W. R., Gao Y. * and Wang Z. G.*, "Effect of confinement on the water rotation via quantum tunnelling", Nanoscale, 2018, 10, 18622-18626;
26, Gao Y.(学生一作), Jiang W. R., Xu D. X., and Wang Z. G.*, " Localization-vs-Delocalization of 5f Orbitals in SuperatomSystems", Adv. Theory Simul., 2018, 1700038;
25, Yu T. R.△(学生一作), Gao Y.△, Xu D. X., Wang Z. G.*, “Actinide endohedral boron clusters: A closed-shell electronic structure of U@B40”, Nano Res. 2018, 11, 354–359;
24, Xu D. X.(学生一作), Gao Y., Jiang W. R., Wang Z. G.*, “An unusual spin-polarized electron state in fullerene induced by carbon adatom defects", Nanoscale, 2017, 9, 7875-7879;
23,Wang W. J., Tang Q., Yu T. R., Li X., Gao Y., Li J., Liu Y., Rong L.*, Wang Z. G.*, Sun H. C.*, Zhang H.*, and Yang B., “Surfactant-Free Preparation of Au@Resveratrol Hollow Nanoparticles with Photothermal Performance and Antioxidant Activity”, ACS Appl. Mater. Interfaces, 2017, 9, 3376–3387;
22, Gao Y.(学生一作), Jiang W. R., Chen L., Wang J. and Wang Z. G.*, "First-principles study on charge-transfer in actinide-containing superatom from surface-enhanced Raman scattering", J. Mater. Chem. C, 2017, 5, 803-806;
21, Wang B.(学生一作), Jiang W. R., Gao Y., Teo B. K.* and Wang Z. G.*, “Chirality recognition in concerted proton transfer process of prismatic water clusters”, Nano Research, 2016, 9, 2782–2795;
20, Chen L., Gao Y., Cheng Y. K., Li H. C., Wang Z. G.*, Li Z. Q.*, Zhang R. Q.*, "Nonresonant Chemical Mechanism in Surface-Enhanced Raman Scattering of Pyridine on M@Au12 Clusters", Nanoscale, 2016, 8, 4086-4093;
19, Wang B.(学生一作), Jiang W. R., Dai X., Gao Y., Wang Z. G.* and Zhang R. Q.*, "Molecular orbital analysis of the hydrogen bonded water dimer", Sci. Rep., 2016, 6, 22099;
18, Gao Y.(学生一作), Wang B., Lei Y.Y., Teo B. K.* and Wang Z. G.*, "Actinide-embedded gold superatom models: Electronic structure, spectroscopic properties and application in surface-enhanced Raman scattering", Nano Research, 2016, 9, 622-632 (Highlight in EurekAlert of AAAS);
17, Wu Z. N., Liu J. L., Gao Y., Liu H. W., Li T. T., Zou H. Y., Wang Z. G., Zhang K., Wang Y., Zhang H.*, Yang B.,“Assembly-Induced Enhancement of Cu Nanoclusters Luminescence with Mechanochromic Property”, J. Am. Chem. Soc., 2015, 137, 12906−12913;
16, Lei Y. Y.△(学生一作), Jiang W. R.△(学生一作), Dai X., Song R. X. , Wang B., Gao Y., Wang Z. G.*, “Slippage in stacking of graphene nanofragments induced by spin polarization”, Sci. Rep., 2015, 5, 10985;
15, Gao Y.(学生一作), Dai X., Kang S. G., Jimenez Cruz C. A., Xin M. S., Meng Y., Han J., Wang Z. G.*, Zhou R. H.*, “Structural and electronic properties of uranium-encapsulated Au14 cage”, Sci. Rep., 2014, 4, 5862;
14, Dai X.(学生一作), Xin M. S., Meng Y., Han J., Gao Y., Zhang W., Wang Z. G.*, Zhang R. Q.*, et. al., “Stable electronic structures of a defective uranofullerene”, Carbon, 2014, 78, 19–25;
13, Meng Y.(学生一作), Wu Q., Chen L., Wangmo S., Gao Y., Wang Z. G.*, Zhang R. Q.*, Ding D. J., Thomas N., and Thomas F., "Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments", Nanoscale, 2013, 5, 12178-12184;
12, Song R. X.(学生一作), Wangmo S., Xin M. S., Meng Y., Huai P., Wang Z. G.*, Zhang R. Q.*, “Anomalous stability of graphene containing defects covered by a water layer”, Nanoscale, 2013, 5, 6767-6772 (Inside back cover);
11, Dai X.(学生一作), Cheng C., Zhang W., Xin M. S., Huai P.*, Zhang R. Q.*, Wang Z. G.*, “Defect Induced Electronic Structure of Uranofullerene”, Sci. Rep., 2013, 3, 1341 (被科学网等选为新闻报道);
10, Wangmo S.(学生一作), Song R. X., Wang L., Ding D. J., Wang Z. G.* and Zhang R. Q.*, "Strong interactions and charge transfers between a charged benzene molecule and multilayer graphenes", J. Mater. Chem., 2012, 22, 23380–23386;
9, Tian C. J.△(学生一作), Xiu P.△, Meng Y., Zhao W. Y., Wang Z. G.* and Zhou R. H.*, "Enantiomerization Mechanism of Thalidomide and the Role of Water and Hydroxide Ions", Chem. Eur. J., 2012, 18, 14305-14313 (Front cover);
8, Wang Z. G., Wang C. L., Xiu P., Qi W. P., Tu Y. S., Shen Y. M., Zhou R. H., Zhang R. Q. *, Fang H. P. *, “Size Dependence of Nanoscale Confinement on Chiral Transformation”, Chem. Eur. J., 2010, 16, 6482–6487 (Inside cover, 并被 ChemViews 选为新闻报道);
7, Wang C. L., Lu H. J., Wang Z. G., Xiu P., Zhou B., Hu J., Fang H. P.*, “Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates”, Phys. Rev. Lett., 2009, 103, 137801;
6, Yu T. R.△(学生一作), Gao Y.△, Wang B., Dai X., Jiang W. R., Song R. X. , Zhang Z. W., Tang Y. J., Wang Z. G.*, et. al., “Depolymerization of free-radical polymers with spin migrations”, ChemPhysChem., 2015, 16, 3308-3312 (Highlight in Atlas of Science);
5, Yang Z. X.△, Wang Z. G.△, Tian X. L., Xiu P.* and Zhou R. H.* , “Amino Acid Analogues Bind to Carbon Nanotube via π-π interactions: Comparison of Molecular Mechanical and Quantum Mechanical Calculations”, J. Chem. Phys., 2012, 136, 025103 (Highlight in Biochemical Physics, 入选2011-2015之 JCP最多引用中国作者论文之列);
4, Wang F. T.(学生一作), Chen L., Tian C. J., Meng Y., Wang Z. G.*, Zhang R. Q.*, Zhang P., Ding D. J., et. al., “Interactions between free radicals and a graphene fragment: Physical versus chemical bonding, charge transfer, and deformation”, J. Comput. Chem., 2011, 32, 3264–3268;
3. Wang Z.G.*; Zheng Z.R.*; Yu J.H.,“Transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure”, Phys. Lett. A 2007, 370, 113-118;
2. Wang Z.G.*; Yao M.G.; Pan S.F.*; Jin M. X.; Liu B. B.; Zhang H. X.; et. al, “ A barrierless process from physisorption to chemisorption of H2 molecules on light-element-doped fullerenes”, J. Phys. Chem. C 2007, 111, 4473-4476;
1. Wang Z. G.; Lian K. Y.; Pan S. F.*; Fan X. H., “A path from Ih to C1 symmetry for C20 cage molecule”, J. Comput. Chem. 2005, 26, 1279–1283;